

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

On The Accuracy of The Vibrational Wave Functions and Derived Quantities

V. B. Gohel^a

^a Physics Department, Gujarat University, Ahraedabad, India

To cite this Article Gohel, V. B.(1974) 'On The Accuracy of The Vibrational Wave Functions and Derived Quantities', Spectroscopy Letters, 7: 11, 575 — 580

To link to this Article: DOI: 10.1080/00387017408067289

URL: <http://dx.doi.org/10.1080/00387017408067289>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ON THE ACCURACY OF THE VIBRATIONAL WAVE
FUNCTIONS AND DERIVED QUANTITIES

Key words : Vibrational wave functions.

V.B. Cohel
Physics Department, Gujarat University,
Ahmedabad-380009 (India).

ABSTRACT

Effect due to uncertainty in the dissociation energy, which is a major source of error (Jarmain, J. Quant. Spectr. Radiat. Transfer, (1971), 11, 421-6) in the calculations of vibrational wave functions and derived quantities, has been investigated. It has been found that for the molecules, for which the highest observed vibrational level is well below the dissociation limit, the effect is extremely small.

In the last decade vibrational wave functions for large number of diatomic species have been computed numerically. The computer programme originally written by Cooley¹ and modified by Zare and Cashion², based on the method previously outlined by Hartee³ is in wide use for this purpose. The accuracy of the results and the sources of error have been discussed in detail by Jarmain⁴. The accuracy of the wave functions was investigated by three tests: (i) by comparing observed

vibrational eigenvalues with those generated by the programme, (ii) by comparing observed rotational energies with those generated by the programme and (iii) by calculating the orthogonality integrals or 'Noise factor' defined by $\max_{v_1=v_2} \left| \int \psi_{v_1} \psi_{v_2} dr \right|^2$

According to Jarmain⁴ the errors in the calculated quantities can be classified in two groups: (i) those that arise from errors or approximations in the method and (ii) those that stem from inaccurate experimental data.

(i) Errors of this kind are found to be insignificant.

(ii) Inadequate or incomplete experimental data represent a real limitation, especially if the dissociation energy, D_e , is not well established. In this circumstance the potential energy curve does not have the proper shape and there will be errors of unknown magnitudes in all derived quantities. It must be mentioned here that the dissociation energy enters in the extrapolation method suggested by Jarmain⁴.

In the present communication we investigate the effect of uncertainty in D_e on the vibrational wave functions and derived quantities like vibrational and rotational energy and 'noise factor'.

The typical case under consideration is the ground state of SnF molecule. Three different values of the dissociation energy are available for this case: (i) 45000 cm^{-1} , Singh and Rai⁵, (ii) 31748 cm^{-1} , Herzberg⁶

and (iii) 26909 cm^{-1} , Gaydon⁷. The RKR potential curve for this case has been reported by Singh and Rai⁵ and we have used the same curve in the present study. In order to calculate the wave functions up to highest observed vibrational level ($V_{\max} = 8$) in the present case the potential curve was extrapolated both on right and left sides by the method suggested by Jarmain⁴. All the three values of D_e mentioned above were utilized in turn and calculations were carried out for each case. The calculations were performed on IBM 360 at the Physical Research Laboratory, Ahmedabad (India). Vibrational wave functions, vibrational energies, rotational energies and 'noise factors' were generated and examined in the context of the three tests described by Jarmain. Table (1) and (2) display the numerical results. It can be seen from the tables that the dissociation energy has a very small effect on the vibrational and rotational energies. The 'noise factor' in each case was found to be less than 10^{-14} .

To examine the effect of D_e , the extrapolated wings of the potential curve, with each value of D_e , were carefully examined. It was found that in an appreciable region beyond the turning points of the highest vibrational level the curves reproduced almost the same energy. In the regions where curves differ from each other the wave function values for the highest observed level were found to be extremely small

TABLE (1)
 Comparison of experimental $G(\nu)$ (cm^{-1}) with those generated by the Program

Vibrational quantum number	$G(\nu)$ expt.		$G(\nu)$ when $D_e = 45000 \text{ cm}^{-1}$		$G(\nu)$ when $D_e = 26909 \text{ cm}^{-1}$		$G(\nu)$ when $D_e = 31748 \text{ cm}^{-1}$	
	$G(\nu)$	D_e	$G(\nu)$	D_e	$G(\nu)$	D_e	$G(\nu)$	D_e
0	290.8	290.8	0.0		290.8	0.0	290.8	0.0
1	868.1	868.5	+ 0.4		868.5	+ 0.4	868.5	+ 0.4
2	1440.2	1440.7	+ 0.5		1440.7	+ 0.5	1440.7	+ 0.5
3	2006.4	2007.6	+ 1.2		2007.6	+ 1.2	2007.6	+ 1.2
4	2568.8	2568.4	+ 0.6		2568.4	+ 0.6	2568.4	+ 0.6
5	3123.4	3123.5	+ 0.1		3123.6	+ 0.2	3123.6	+ 0.2
6	3674.2	3674.2	0.0		3674.4	+ 0.2	3674.3	+ 0.1
7	4219.8	4219.5	- 0.3		4219.9	+ 0.1	4219.8	+ 0.3
8	4760.8	4761.5	+ 0.7		4762.6	+ 1.8	4762.2	+ 0.7

TABLE (2)
 Comparison of experimental B_v (cm^{-1}) values with those generated by the Program

Vibrational quantum number	B_v expt.	B_v when $D_e = 45000 \text{ cm}^{-1}$	B_v when $D_e = 26909 \text{ cm}^{-1}$	B_v when $D_e = 31748 \text{ cm}^{-1}$	Dev	Dev	Dev
0	0.2722	0.2723	+0.0001	0.2723	+0.0001	0.2723	+0.0001
1	0.2710	0.2710	0.0000	0.2710	+0.0000	0.2710	0.0000
2	0.2699	0.2699	0.0000	0.2699	0.0000	0.2699	0.0000
3	0.2689	0.2689	0.0000	0.2689	0.0000	0.2689	0.0000
4	0.2678	0.2679	+0.0001	0.2679	+0.0001	0.2679	+0.0001
5	0.2667	0.2669	+0.0002	0.2669	+0.0002	0.2669	+0.0002
6	0.2656	0.2655	-0.0001	0.2656	0.0000	0.2656	0.0000
7	0.2645	0.2641	-0.0004	0.2642	-0.0003	0.2642	-0.0003
8	0.2634	0.2630	-0.0004	0.2630	-0.0004	0.2632	-0.0002

($\sim 10^{-10}$) to produce any sizable effect on the final quantities. The wave functions for the lower vibrational levels were still smaller in the regions of extrapolation.

The results of the present investigation clearly show that for the molecules for which the highest observed energy level lies well below the dissociation limit, the effect of D_e , used in the extrapolation of the potential curve will be extremely small. In such cases the uncertain values of D_e will also give the reasonably accurate values of the wave functions and the derived quantities.

REFERENCES

1. J.W. Cooley, *Math. Comp.* **15**, 363 (1961)
2. R.N. Zare and J.K. Cashion, *UCRL Report 10881* (1963)
3. D.R. Hartree, *The Calculations of Atomic Structure*, John Wiley, New York Chapt.5, (1957)
4. W.R. Jarmain, *J. Quant. Spectr. and Radiat. Transfer (GB)* **11**, 421 (1971)
5. R.B. Singh and D.K. Rai, *Ind.J.Pure and Appl. Phys.* **4**, 102 (1966)
6. G. Herzberg, *Spectra of Diatomic Molecules*, D.Van Nostrand, New York 571 (1951)
7. A.G. Gaydon, *Dissociation Energies and Spectra of Diatomic Molecules*, Chapman and Hall 232 (1953)

Received August 14, 1974

Accepted September 24, 1974